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Synopsis

The consequences of the hypothesis — recently advanced by C. MoLLER ~ that
gravitation may be described by a tetrad field, are examined by studying the most
general Lagrangian obtained as a linear combination of invariants. A particular
choice of these can be made on the basis of correspondence with the Newtonian
theory. The field equations obtained from this particular Lagrangian, although
somewhat different from those of MoLLER, give rise, in the case of a static, spheri-
cally symmetric system, to the usual Schwarzschild metric. Moreover, in the cases
considered explicitly by MoLLER the solutions of the field equations are the same.

A conserved energy-momentum complex having the property that the energy
density is localizable is also derived. The use of a tetrad field to describe the
structure of space-time allows the introduction of spinor fields, and in particular
of the neutrino field, in a natural way. A new coupling between fermions and
gravitation also follows from this theory.
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I. Introduction

he concepts of energy and momentum and of conservation laws, which have

played a very important part in all physics, have some peculiar features in the
theory of general relativity. Owing to the general covariance of the theory, there
exist an infinite number of conservation laws, all equally valid®.

The selection from these of what may be called the ‘‘energy-momentum’ con-
servation law is essentially a matter of physical interpretation. Various ‘‘complexes’,
each with certain definite properties, have therefore been proposed®. In particular,
MoLLER® introduced some conditions which must be satisfied in order that a complex
be the energy-momentum complex. Especially he required that the energy density be
localizable, i. e. a scalar under the group of purely spatial coordinate transformations,
and that the total energy and momentum be transformed like a four-vector with respect
to the Lorentz group. Subsequently MgLLER® was able to show that no complex
satisfying both these conditions can be formed within the framework of Einstein’s
theory.

To come out of this situation, he proposed a new formulation of the theory @ ©),
in which the fundamental variables of the gravitational field were assumed to be the
16 components of a tetrad field, connected by ten relations with the metric tensor.

There are two possible approaches to tetrad fields. The usual one consists in
regarding additional degrees of freedom associated with tetrads as non-physical. In
the framework of this philosophy tetrads may be used as working tools in the same
way as one uses potentials in electrodynamics. However, similarly as in electrodynam-
ics, where physically meaningful quantities have to be gauge-invariant, the entire
physical content of the theory must, in the usual approach to tetrads in general relativity, -
stay invariant with respect to arbitrary Lorentz rotations of tetrads (which may change
from point to point). When using tetrads in this spirit, one remains strictly on the level
of orthodox general relativity.*

The second approach to tetrads, which is closer in spirit to that advocated by
M@LLER, is based on the hypothesis that all 16 degrees of freedom of tetrads may be
physically meaningful; here one demands of the theory that its physical quantities
are invariant only with respect to constant tetrad rotations.

* The question how convenient tetrads are in the treatment of global conserved quantities (and in other
problems of the usual theory) is discussed by one of us (J. P.) in Proceedings of the Warsaw Conference on

Relativistic Theories of Gravity.
l*
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Once this assumption is made, it is possible to obtain an energy-momentum
complex satisfying both conditions. Since, for a given physical situation, the deter-
mination of the tetrad field requires sixteen equations, MgLLER added to the usual
Einstein equations a set of six equations Pup = 0, Where @qp is a skew tensor function
of the tetrads and their derivatives. He was then able to show that, in the linearized

case, his equations 7
Gocﬂ = 7xTocﬂ } (L1)
Pap =0

are equivalent to the Einstein weak-field equations, and that the solution of (1.1) for
a static, spherically symmetric system gives rise to the usual Schwarzschild metric.
The new theory is thus in agreement with all known experimental facts. However,
the general expression for g,g contains a certain arbitrariness, which it would seem
interesting to try to eliminate by attempting a variational-principle formulation of the
Moller theory. This is what we will try to do in the present paper.

In other words, we intend to investigate the theory that follows from these
assumptions: (1) the Moller hypothesis that all 16 degrees of freedom of tetrads are
physically meaningful (invariance only with respect to constant tetrad rotations); (2)
that a canonical formulation of the theory in terms of an action principle is possible.

We see that in this way we investigate a theory that from a heuristic point of
view is wider than orthodox general relativity, which so beautifully solves all problems
meaningful in the framework of its philosophy. Nevertheless we are of opinion that
a generalization of this type is worthy of investigation.

It is of importance to realize that even the dynamical laws determining in this
theory the metric tensor may be slightly different from the usual Einstein equations;
nevertheless the usual philosophy of general relativity (including the principle of
equivalence) here remains the same.

Some misunderstanding may arise in connection with the possibility of Fern-
parallelismus in this theory, which might be taken to be contradictory to the orthodox
interpretation of general relativity. We would point out that when, in the usual theory,
there exists a physical vectorial field, e. g. potentials of the vectorial mesonic field,
the notion of Fernparallelismus to that vector may be introduced without violation
of any first principles of the theory. When one understands tetrads as four physical
vectorial fields fixed by consistent dynamical laws, and the metric as a secondary
concept defined in terms of these fields, there is no need to change the usual inter-
pretation. There is, however, the possibility that the dynamical laws governing tetrads
are different from the usual ones, which determine tetrads only up to x-dependent
Lorentz rotations.

The chief purpose of this paper is precisely to investigate the possibilities asso-
ciated with the small latitude that can be allowed in the choice of the dynamics de-
termining tetrad quantities. The interpretation of the theory, however, stays the same
as in orthodox general relativity.
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In the next section the tetrad formalism is briefly introduced, and our notations
fixed. In section III the general structure of the Lagrangian & of the tetrad field is
studied. The actual construction of the most general £ by means of the invariants
formed of tetrads is made in section IV.

As noted by Moller, the space-time continuum used in this theory differs from
the usual Riemannian space by the existence of a tetrad in every point. This fact has
interesting consequences in geometry; for instance it allows the introduction of the
concept of absolute parallelism of two vectors at distant points.

For the definition of absolute parallelism and its developments, such as the
absolute derivation, the reader is referred to the work of MgLLER . Here we only
want to point out that the most important geometrical notion in this space is that of
torsion, characterized by a tensor A, such that when Apapry =0, space-time is flat.
In accordance with this the torsion tensor is used in section IV to build up the invariants.
The Lagrangian is written as a linear combination of four of these invariants; hence
it will contain four arbitrary constants; these are determined in section V, which deals
with the linearized form of the theory. The result is that if we choose two constants
equal to zero, the linearized theory is equivalent to that of Einstein.

Since we assume this to be a necessary condition, we obtain in this way a Lagrang-
jan € depending on two constants k; and k, only; the further development of the
theory will be based on this . From the linear approximation it also follows — which
is interesting to note — that ky'is equal to the Einstein gravitational constant. Although
the constant k, will remain undetermined in this work, it seems possible that further
developments will be able to give us some information on it.

Another characteristic of a theory of this type is that, together with the group
of coordinate transformations, there is another group leaving the Lagrangian invariant,
i. e. a simultaneous and equal rotation of all the tetrads. This is shown in section VI
and is also used in appendix B to introduce spinors by means of the representations
of these rotations. This simple and natural way of defining spinors has two note-
worthy consequences: (a) the derivative of a spinor can be consistently defined as
the partial derivative; (b) since the theory is invariant only with respect to the group
of proper tetrad rotations, the neutrino has its own place in the theory, and its existence
is related to the fundamental structure of space-time.

The field equations are derived from the Lagrangian in section VIL. They turn
out to be different from those proposed by Meller. This is due to the fact that the
possibility of using the Levi-Civita tensor in the construction of g,g was overlooked,
whereas the same tensor plays a fundamental part in this work. The field equations
derived in section VII are

key Gocﬂ +hy Fo af> =~ T(b)fxﬂ - T(f)< off > 1

(1.2)
ky F[ocﬂ] = = TP, I
where again G,g is the Einstein tensor and F,g is analogous to @ug. In our case, anyway

Fyp has a symmetric as well as an antisymmetric part. The matter tensor has been
Mat, Fys. Skr. Dan. Vid. Selsk, 2, no. 4. 2
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divided, in (1.2), into a boson part and a fermion part. The existence of the new
“skew’” equation ky F,g = — T[(Qg] is interpreted to mean that the space-time structure
is determined by matter not only through the symmetric energy-momentum tensor,
but also through the skew part ng?ﬁ] which is connected with the spin angular-momen-
tum tensor. All the physical content of the theory now becomes clearer: the usual
Riemannian space-time is not general enough to describe classical matter as well as
spinor fields; this deficiency is shown in the lack of a satisfactory (in the Moller sense)
energy-momentum complex and of a natural way to introduce spinors ®.

If we assume that the influence of a boson and that of a fermion on the space-
time structure are qualitatively different, we need a scheme wider than that of Einstein,
and this might be a space with a built-in tetrad lattice. For the theory to be in agree- -
ment with experimental facts it is further necessary that the tetrad field obtained by
solving eqs. (I.2) in the case of a static, spherically symmetric system, gives rise to
the Schwarzschild metric. That it is so, is shown in section VIII. It is interesting that
this particular tetrad field is just identical with that obtained by MgLLER ® for the
same case.

Finally, in section IX, the energy-momentum conservation law is discussed. Tt
is shown that the energy-momentum complex we derive satisfies both Mgller con-
ditions. In addition to a conservation law T“’ﬂﬁ =0, a tensorial conservation law is
seen to follow from the structure of the field equations. In general, Taﬂ can be written
in the same form as the Mgller energy-momemtum complex:

TS -0 +ufqn, (1.3)
TS - 11&/37’],9,, (1.4)

and the only non-tensorial term in (1.3) is 4%,,. Both the superpotential Uf*! and T,
can be written as a linear combination of the corresponding Meller term and a new one:

T =T + TE.

In the case of a static, spherically symmetric system the new term vanishes, while
in the linearized case it can be written as a divergence and is moreover symmetric.

The use of tetrads in general relativity was already proposed by EINSTEIN in
1928 (), He tried, however, to use the six new degrees of freedom contained in the
tetrad field to describe electromagnetism. The equations derived by Einstein were
shown to be incompatible with the Schwarzschild solution ®).

I1. Preliminaries and Notations

Let V, be a normal hyperbolic Riemannian space characterized, in arbitrary
coordinates % by the symmetric metric tensor 9o (). Greek indices take the values
0,1,2, 3. The signature (+,—,—, —) is assumed for the metric. The indices labelling
the vectors of a tetrad will also be denoted by Greek letters, but with a “‘roof” above
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them, so that theindex & takes the values 0,1, 2, 3. The Einstein summation convention
is assumed.

Now, because of the normal character of V,, one may always construct at a
given point four vectors orthogonal to each other, one of them being time-like and
normalized to plus one, the remaining ones space-like and normalized to minus one.
Denoting the covariant components of these vectors by gz (), we may summarize
their orthonormality properties in

g% g% b - 9%, (IL.1)
where g&8 is the numerical matrix of special relativity,

1
. -1 0
98 = 9ap = . (11.2)
0 -1
Note that the existence of such vectors is equivalent to Hilbert’s condition. We will

also assume that the gg(a:) as functions of x are differentiable, i. e. that they change

from point to point in a regular way. The normal and roofed indices may be raised
or lowered by means of the quantities g,g, 9%, gsp g%B respectively. (11.1) may now
be written as

& o & "
g 8%, 1L.3
9,95~ %3 (1L.3)
Multiplying (I1.3) by four arbitrary scalars A; and by glg, one obtains

1 &\ B e &
(A& gg) gg gfi - A& 9o
and from this follows
9" g% =&, (11.4)

9 956~ Y (11.5)

Eq. (IL.5) is the fundamental relation between the ten components of the metric
tensor and the sixteen components of tetrads. While the tetrads completely determine
the metric, the reverse is not true.

A Lorentz transformation of the roofed indices, i.e. a tetrad rotation

9. (@) = L% @) ¢, (@ (11.6)
with

gé&LQ&(x) LGB(J;) - g&fp (11'7)

leaves the metric tensor invariant.
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Adopting the notation

g_.=det|gaﬁ|, g"=det|gdl3|, ]
D —det| ], gr = det ] [
| g - ggl> g3 —det|gs|,
one obtains
gigi=1 l
g..= (g’ I (11.9)
9" = —(gD"
Therefore, if one understands as |/ —g .. the positive branch of |/, one gets
V=g.. =gl (11.10)

We conclude this section with the remark that, considering all metric quantities
as known, one may attribute to a vector A four different kinds of component: A%,
Ay, A% As. The table below explains how one of them can be expressed through the
others.

TaBLE 1
@ o _ % AR af o4
AT = 4 =g Ag=gp AP gﬂAﬂ
P N .
Aoc:gocﬁA = Aa=gal§Aﬁ:g§ Aﬁ
A&:gf;Aﬂ:g&ﬁAﬁ: A&:ga"éA,‘g
I B B _
5= 9apd 05 Ap 940 - Ay

II1. The Lagrangian of the Tetrad Field

The principal aim of this work is the formulation of an action principle

0a=6{ 2@ (@, g5 @) dix =0

for the tetrad field. We assume that the Lagrangian satisfies the following conditions:

(I) it must be a scalar (or pseudoscalar) density with respect to the group of
coordinate transformations;

(II) it must be a scalar or pseudoscalar density with respect to the subgroup

of constant Lorentz rotations of the tetrads, i. e. the rotations for which

OL% ()
)
At ’

(I1I) it must be a function of the gz (x) and their first derivatives, and further

it must be bilinear in the gz ﬁ(x)
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This is sufficient to determine the general form of &. In fact, because of the covariance
requirement, the first derivatives of the tetrads can appear in £ only in the form of
covariant derivatives, i. e. as

(24

& & Y
ga;ﬂ=ga,ﬁﬂfaﬂge. {11.1)

Expressing the metric tensor in terms of tetrads and substituting in the Christofell
symbol, we obtain the relation between the covariant and non-covariant derivatives

of g“’*
o
_ g% pluIc
N 9apsy = 9% Plapry Gow ™ o) (111.2)
where
wulo _ v St SV Si Gy s SV SU &y si sV S
4P ey = 9a (6 0 — 07, 65) + g5 (), 88— 0} 85y + g (0 85— 67 8y (111.3)

Therefore we can get a Lagrangian satisfying (I), (II) and (IIT) if we write it in the
form

1. PP RN R
8= gt LEPWI (gh o gh ) (9 ,— 62 ) (II1.4)

The quantity L [“ﬁ] [g"] —Lé’“’] %61 must be a tensor with respect to coordinate

transformations. It IS clear that it can be constructed only from quantities like the
tetrads and the Levi-Civita tensor.

Without specifying the form of L;“ﬁ] ["g”] it is already possible to draw some
results from the form (IIL.4) of the Lagrangian. By varying the tetrad field in (I11.4)
we obtain the equations of motion

. ~ a N - “ .
~ 9| g" LI g0 O (gt L], b g — ot Tk
z[g.L/1 g ’V}’6+8gz [g.L& ‘ ]ga;ﬂgw g: . (111.5)
A

To derive (I111.5) we have added to (III.4) the Lagrangian of an external field and
have introduced the notation

a 8ext.
) g% .

~ A
g:T2=

From (I11.5) a conservation law follows immediately:

N I r
g: ri+@(9:L%“ﬂ”‘_g’”)gg;ﬁgzw} =0. (111.6)
A )

* By [af] and <xf > we will indicate antisymmetry and symmetry with respect to the indices «, B.
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Note that both terms in (I11.6) are vector densities. Introducing the notation

I v 1 A
e R QLT (I11.7)
93
0 = G+, (111.8)
we may write (111.6) as
g 6; -0, (111.9)

which is a comipletely covariant equation. Furthermore, from (II1.5) it is easily seen
that

~ A ~ o [AG]
9: 05 = g: Uﬁ;é (111.10)
o 1) P L N T N
g:U; " =2g:L; 5 g‘l@“v. (111.11)

These results will be used in section IX to obtain a conserved energy-momentum
complex.

IV. Construction of the Lagrangian from the Invariants of the Tetrad Field

In section III the general structure of the Lagrangian has been studied. Now
the most general form of ¢ satisfying our conditions will be written explicitly as a
linear combination of the invariants bilinear in the first derivatives of the tetrad field.
In order to construct the invariants we introduce the tensors

Viapry = 9o Iap, (IV.1)
& 4 R & .
A[Oﬂﬁ]‘}’ = (ga, Ji] - gﬂ, oc) g&y = (g“;ﬂ - gﬂ; “) g&y’ (IV.Z)
Dy = Arag = VP, (1V.3)
A% = 770 A g s, (1V.4)
Ay = Ny AP0, (IV.5)
» i
Ates1__ > WA (1V.6)
» i
A[QO']‘L' = Q WQGAWA[M]-;, (Iv.nH

where the tensor # is defined by
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nocﬁyé - — g oo
Nupys = 9 : ExByd

and V9, eypys are the numerical Levi-Civita symbols.
Arapy is the fundamental torsion tensor in our Riemannian space with a built-in
tetrad lattice ©).

All the invariants bilinear in the gg_ g can now be written in the form

I= Tﬁ‘ﬁ},’/l[aﬁw A1y,

The use of the conditions 1 and II gives us the following seven invariants:

I = g: Apgey” A, (IV.8)
I = gt g, AP, (1V.9)
Iy = gt Apgyy A1y, (IV.10)
I = o7 g% Aoy Ao (Iv.11)
I, - @aﬂvu g Awapry A (Iv.12)
I = e g Aragyy Ao (1V.13)
I = P2 g A, A (1V.14)

All these are pseudoscalar densities with respect to the group of coordinate
transformations. I, I,, I; are pseudoscalar also with respect to constant Lorentz
rotations of tetrads, while I, - - -, I, are scalar with respect to this group (see section VI).

The term [, can be written as a full divergence; in fact

7 o v 0 &
L4t grig, g 92 595,

Voo (IV.15)
_ ofiy 0 a
-4 {8 ’ 956 90,8 -‘hb'
Using the inverse relation of (IV.6)
i - o
Apgpip = 59 El’lJQO'A[QG]‘u (IV.16)
and the relation
A+ A at Ay = 197 g A9, v.17)
we find
I, = eodom gyﬁ A Late Aleol
3 a1y \g 9 Cooty 7 u (1V.18)

= 2i g7 A%, Argpry



I, = % e g7 Aoy (Aggon = Atz + Ay~ Appa 1)
o9 g Aleo A[@A]y"%j/l - (IV.19)
-1, _% I,

I - % P71 g% Aoy (A i = Aeagaw + Az = A 2)
_ ,%72,%13 (1V.20)
= I+ % I,.

It is clear that of the invariants I;,- - -, I, only one among the first three need be
considered in the Lagrangian; we select for later use the term .

Let us now turn to the other invariants, Iy, I,, I;. It will be useful to introduce
some linear combination of them, such as

1.1 .
Pr= gLy I= 1 = g [yagy, v — 0,97, (1v.21)
1 1 - oy s
Py=Iy-5 Iy =~ 90 A% 4, (1V.22)
po Lty 8, - By V.23
3 D) 2 4 3 g ‘}}0(,]3’}11}) : ( . )

It is easy to see that P; is equal to &,,, the Mgller gravitational Lagrangian,
differing from |/~ g R only by a divergence (see appendix A). Our general Lagrangian

now takes the form
3

Q= >, Pi+a,ls, (IV.24)
1

and in it we have four arbitrary constants.

V. The Linear Approximation
and the Complete Determination of the Lagrangian

We shall study in this section some consequences derivable from the Lagrangian
(IV.24) in order to get information on the constants a;,- - -, ay. The approach used
is the study of the linear form of the theory; in particular we require that the line-
arized field equations are the same as the Einstein ones plus, of course, a set of six



Nr. 4 13

equations. To put it in a different form, we ask that our theory contains the Newtonian
theory of gravitation as a limiting case.

To perform the linearization we consider an “‘insular’” system of matter and
assume that space-time is asymptotically flat and that cartesian coordinates are used
at infinity. Then the tetrad can be written in the form

g =6§+ Re. (V.1)

"R
o

DN | =

The term hg, describing the deviation of space-time from flatness, is assumed to be
everywhere\small of the first order. In all the following calculations terms of orders
higher than the first in hg will be neglected. Introducing the quantity

o= 944 & 11/@ (V.2)

and substituting (V.1), (V.2) in (IL.5), we find that

9ap = nacﬂ""h<ocﬂ>: (V.3)

where 7,4 is the special-relativity metric tensor.

Hence, in the linear approximation, the tetrad field is described by the tensor
hyg, whose symmetric part gives the metric tensor while the antisymmetric part de-
scribes the new degrees of freedom of the theory.

The torsion tensor obtained from (V.1) is

1
Arapry = g By, f~ Tiyp,al- | (V.4)

Substituting (V.4) in (IV.13), (IV.21), (IV.22), (IV.23) and introducing the notation

h=h_,*. (V.5)
and the dual
W = =5 278 hggy, (V.6)
we obtain
1 1
SMEPI:Zh<aﬁ>’y11<“ﬁ>’y4§11<“ﬂ>’“h<y'6>’7) l
1 1 (V.7)
+§h,ah<“ﬁ>’ﬂ~1h’ah’“, l

Py= kP gl r?, (V.8)
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1

1
Py =§I1<“5>,yh<°‘ﬁ>'7’—§h<aﬁ>’“h<7’/3>’y
(V.9)
1
1 Bapy,y plBLY hegps'® hWﬂ], "
Iy = 4ibP1 g he ot = Dy 7. (V.10)
In writing down (V.7), ..., (V.10), we have neglected divergences; in particular,

the expansion of & has been replaced by that of /g R since, of course, they can
only differ by a divergence.

The equations obtained by varying ¥, with respect to Ii_ 4. are just the Einstein
weak-field equations. This means that the constants a,, a3, a, must be so chosen
that in the equation obtained by varying the Lagrangian with respect to h_ «p> all terms
depending on h_,g-. itself come only from &,,. The first thing one would think of is
then to assume

ag=a, =0
so that the Langrangian becomes

/8:(11 8M+(12P2.

The linearized field equations, in the absence of matter, are then

1 ‘ R
5{" U Pop — Nap ¢QG,Q,0'+ ("70(@ 6%’4'77;39 6%)97@!, U,'y} =0, (V.11)
| ]1[06/3]’/9;7 _ jlwﬂl,ﬁ,a =0, (V.12)
1
(Pocﬁ:]’<ocﬂ>*§77aﬂh' : (V.13)

Equations (V.11), (V.12) cannot be solved unless we specify the boundary
conditions. To derive the linear approximation we have assumed an asymptotically
flat space-time in which cartesian coordinates are used at infinity. Hence we can
introduce the “outgoing waves” boundary conditions ¢

(a) ‘ lim gg = aﬁf;
r—>»oc

(b) if yis any of the quantities g7 — o% or up ™ Mg it must satisfy the condition

IG@y) 139Gy
{87 oo (7Y

lim
r—>co
for all values of ¢, = t+lc—' in an arbitrary fixed interval; the y and the first-order

derivatives must also be bounded everywhere and must go to zero at least like 1/r for

r — oo,
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The conditions a, b require the matter system to be an insular system, but they
do not exclude the presence of gravitational waves emitted by it. An important conse-
quence ® of a, b is that, given a quantity y satisfying b, the only solution of the equation

Oep=20 (V.14)
is
p=0. (V.15)

This result allows us to solve equation (V.12); in fact we obtain from it by
derivation
[ Rlehl g=0
and, using (V.14), (V.15), ’
P15 — 0. (V.16)

Equation (V.16) just says that hy,,, can be written by means of a vector potential A, as
Ry = Ay, — Ay u (V.17)

For an arbitrary vector field A, the Iy, given by (V.17) satisty the field equations
(V.12); hence these cannot determine the skew degrees of freedom of the tetrad field.
In this situation it is impossible to attribute any physical meaning to the hy,,,.
The Lagrangian we obtain when choosing ag = a4 = 0 is thus completely unsatisfactory,
although we can derive the linearized Einstein equations from it.
A choice of constants giving a better result is

ag=03=0 a;#0 a;+#0.

In this case the field equations are

a
SO g g g O+ ) 0% ) ] (V.18)
-2 ia4{h[”ﬂ],ﬂ’ﬂ+]1[M/3]’ﬁ,V} _ _p<mw> J
-9 gl‘”aﬂ{h<w>,ﬂv74]1[“?/]'/3’7}4_2 i{h[“ﬁ],ﬂ’”—h[”ﬁ]’ﬁ’l‘} _o. (V.19

To derive (V.18) we added to our Lagrangian a matter term E}m depending on the

g% only through the metric tensor, so that

52’”1 = T<#v>
5h<‘uv>
&_0

0 iy
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All the macroscopic physical systems are of this type, so that equations (V.18),
(V.19) are what we need in order to see whether the linear form of our theory con-
tains the Newtonian theory of gravitation.

Taking the derivative with respect to =¥ of (V.19), we obtain

RWA 5~ 0 (V.20)
and, using (V.14), (V.15), .
h#Pl =0, (V.21)

This result reduces (V.18) to the Einstein weak-field equations. The other equation,
(V.19), still contains both the symmetric and the skew part of k.
A complete separation can be achieved in harmonic coordinates, where the

de Donder condition
g -0 (V.22)

holds. This, together with (V.21), allows us to write (V.18), (V.19) as
—ay Ot =2 7<=, (V.23)
h[aﬂ],ﬂ’y_h[ﬂy],a’y =0. (V24)
Since from (V.21) it follows again that

h[c‘xﬂ] — Aoc,ﬂ_Aﬁ,ow
(V.24) becomes simply
U gy = 0 (V.25)

so that eventually our field equations are reduced to
—a At =2 7<= (V.23)
Ay = 0. ’ (V.26)

This is the same result as that obtained by Meller®). From (V.23) we can determine

the value of the constant a;:
-1 _ 8xk

ay Y

; (V.27)

where k is the Newtonian gravitational constant. These results allow us to assume
as Lagrangian of the tetrad field

Q=ly &y + ko I (V.28)
with k; = a; given by (V.27).

About the other constant, k,, we have no information; since k, drops out of
the equations also in the case of a spherically symmetric system, for which the solution
of the field equations derivable from (V.28) will be given in section VIII, we shall
not be able to give its value in this paper. We have a feeling that k, is related to some
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non-classical aspect of the gravitational field and that it might become important in a
quantized version of this theory.

We would also point out that the results (V.23), (V.26), and also those obtained
in section VIII for the Schwarzschild case, are left unchanged if we add to the La-
grangian (V.28) the term a,P,. For simplicity we assume a, = 0, but the possibility
of adding the term a, P, to our Lagrangian is worth noting.

VI. The Invariance Properties of the Lagrangian with Respect to the Group
of Tetrad Rotations

In this section we want to study the behaviour of the Lagrangian
L=ty Stk Iy (VI.1)

with respect to the group of tetrad rotations, defined by
g5 (x) = L% (x) gb (=), (V1.2)
956 L8, @) L7 () = g5 (V1.3)

and already introduced in section II.

The matrix L“B can in general be a function of the coordinates. We have already
noted that the metric tensor is invariant under the substitution (VI.2). The same is
true of the Ricei tensor R*8 and of the scalar curvature R, in accordance with the
fact that the Einstein field equations cannot alone fix the tetrad field.

Let us now consider the Lagrangian (VI.1). It is clear that under constant tetrad

rotations, i. e. when L&B =0, all the tensors not containing tetrad indices, like A[ozﬁ] .
will be transformed like scalars. On the other hand, the quantity g: is transformed

like a density:
gt =g det i L“BI. (V1.4)

It follows that the two terms &, and I defined by (IV.21) and (IV.13) are transformed
like a pseudoscalar and a scalar density respectively under the whole rotation group.
The Lagrangian & is invariant only with respect to the subgroup of proper tetrad
rotations.

Let us now look into the general case L&ﬁ w? 0, but limiting ourselves to the

subgroup of proper rotations. For simplicity, the infinitesimal transformation

L&B - 55‘3 + 35‘/}, (VL.5)

Mat. Pys. Skr. Dan.Vid. Selsk. 2, no, 4. ’ 3
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for which the condition (VI.3) becomes

38 = " Cha (VIL.6)

will be considered. :
After a somewhat long but simple calculation the variation of ¢ can be written as

~ lu an ‘u A A
08-2 kl g: (W&.B EO‘ﬁ);.qukz Z&[i Eaﬁ,lt’ (VL.7)
where
# # L N “ v A
Web = 95,27 94090 93~ g7 95, %) 95 (V1.8)
and
#o_ affyd v X 0 M 0
Zeg =10 Ay, 93 (4= 4 8) (VL9)

0 U 0 it
+ Ay 595, (020 8 ) Tio-

Note that the variation of &, is a four-divergence, as it should be, since the

theory deduced only from this term is equivalent to the Einstein theory.

The quantity ngg has the property that

w,

bu=0- (VL.10)

This can be seen more easily if we use absolute derivatives and the identity ®
A[aﬁ]'u/u + @iy~ Doy — Ay ot =0. (VIL.11)

A stroke, Acx/ﬂ’ here means absolute derivative. In fact, from the connection between
the absolute and the covariant derivative 6) we obtain

wh —wt wEe

ap;u ap ip af " (VL.12)
W W ey '
"8 9B Mg Mo T
From the definition (VI.8) of W&% we find that
B B osg s
W= A, + 80, ,-8,0, (VI.13)

Substituting (VI.13) in (VI.12) and using the identity (VI.11), we find the result (VI1.10).
The variation of the Lagrangian can now be written simply as

08 =2k gi W ks Z5) s&i{“. (VI.14)

We see that &, contrary to the Einstein Lagrangian, is not invariant under a position-
dependent tetrad rotation. The condition

68 =0 (VIL.15)
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can be satisfied only when we assume

~n =0, VI.16

5B 0 (VI.16)
It follows that the Lagrangian (VI.1) is invariant only with respect to the group of
proper constant tetrad rotations. The existence of this “‘gauge’ group will be used
in appendix B to introduce spinors.

VII. The Field Equations

In this section we want to derive explicitly the field equations from our Lagrangian,
which we now write as

1 M |
C=ghn By ko Ly 55 80 + L) (VIL1)

The Lagrangian of matter has been divided into two parts; the first, 22, depends
on the tetrads only through the metric tensor, whereas this assumption does not
apply to the second, &4,

Examples of physical systems of the first kind are all the classical systems,
such as the electromagnetic field, a hydrodynamical system and a field of boson
particles. To the second type belongs the Lagrangian of fermions, like electrons and
neutrinos, which must be written in terms of spinors.

To evalute the variation of the action integral we first consider the terms &y
and ¥ of the Lagrangian. Since

) g[gkl Lu+ &My dtx =46 S!gklgm Lo gt x, (VIL.2)
we have
—(S—A {ky 8y + 8D} 5gé d*x
g8 e
Q77
i (VIL3)
8
=S 6——9 {]cl §R+2,(}L’)}5g€md4x. J
Q “eo
But
59“529@3595*9@“59% (VIL.4)
so that we obtain
5 S (kg Oy + 8OY bz — 2 5 G U PO g 648 dia, (VIL5)
b o of " x

where
3*
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Gaﬁ _ Raﬂ_%gaﬂ}{’ I

,
oas 50 (VIL.6)
gr OB _ =
7 6.‘]05/3
and R* is the Ricci tensor.
On introduction of the quantities
. S1.
PR A — R (VIL.7)
2 540
g@
. o2
g Tm (VIL.8)
4 da @ )
gQ
the variational principle can be written as
e f.oileoem)| o
0 :aSQ sk S+ kIt 5 80+ 8D | dta
VIL.9
=§ 9t (g G2+ Iy F2 102100 592 gt (e
Jo? Mt Te TR 0 2 e
and the resulting field equations are
ky Gég + ke Fé@ +T(”é" + T‘fé’@ ~0. (VIL.10)

The evaluation of Fég and of F* _ gé“ Féﬂ is performed in appendix A.
Multiplying (VII.10) by gé“ and using (A.24), (A.25), we obtain another form
of the field equations:

Iy 6B 1k, {/Iﬁ; *2pfreo @, % 4P

+ A7 pPx Lo gbestp A je 4 ap
oy T A ¢ ot fe-] (VIL11)

1
+§ goclg n@arg A[‘rg] o A[go‘]w}

~ _T®B_ o

While 6*¥ and T® % are symmetric tensors, F*¥ and 70 have no well-defined
symmelry property. Both T®*} 54 T(f)“ﬁ differ from the canonical energy-mo-
mentum matter tensor by a four-divergence.

Since our theory is generally covariant, the field equations must contain a set
of four identities, in the same way as the Einstein equations are supplemented by the
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Bianchi identities. To obtain these identities we apply the method of infinitesimal
coordinate transformations to the scalar density £*.
Therefore, under an arbitrary infinitesimal coordinate transformation

x'* =%+ & (x) - (VIL.12)
the local variation of ¥ is given by
08 = (&) 4 (VII.13)

Integrating (VII.13) over a finite region 2 in space-time, we obtain, for all functions
£% which vanish on the boundary of £ together with their first-order derivatives,

Sasd‘*xzs O Sg. dha-o0, (VIL.14)
Q 0oy, ™
where
08 _ﬁ‘_< ag )
69&“ ag&a ag& B B
Substituting
895 = ~9sg gﬁ,fg&w £b (VIIL.15)

in (VII.14), we obtain, after a partial integration,
° dg 0L
\ Ka gScﬁ) “og. Ja, ﬁ} & dw=0. (VIL.16)
oW\ o “9

As the functions & are arbitrary inside £, the identities

6% 68
. == g, = VII.
<5gﬂ g“ﬁ> 595, Vi b " (VLD
247 , O [r404
must hold.
Since in our case ¥ = %Iq Ly + ko Iy, (VI1.17) can be written as
[g: (Joy G** + kg F*) g&ﬁ],a—g: (ky G** + kg F*%) Yoo, p = 0
or, on introduction of the quantity
4,5 = g3 g&a,ﬁ, (V11.18)
as
lg° (ky Gg” + ky Fg™)) o — g7 (ky G + kg F*) A%, = 0. (V1L.19)

* See, for instance, reference 10 and also C. MoLLER, Proceedings of the Warsaw Conference on General
Relativity.
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Using the relation®)

Aaﬂy = Faﬂ’)/ + ’}/“ﬁy, (VII20)
we have from (VII.19)

(ky Gﬂa'l‘kz Fﬂa); o~ (K G@“‘i'kz Fga) Vgaﬂ =0,
or, taking into account the symmetry properties of G* and Youf»
Ry GF, o dey [FP%,  — Fe%y ] 0. (VI1.21)

In case ky =0, (VII.21) becomes the usual Bianchi identities.
An analogous result can be derived for the matter tensor, i. e.

OB 5~ 0 (VI1.22)
T ocﬁ;ﬂ —T"ep Vop* = 0. (VII.23)

That this is true can be seen by applying the method used to derive (VIL.21) to the
scalar densities &) and £/ and keeping in mind that the variation of &, with respect
to the matter field variables vanishes when the field equations are satisfied.

Going back to the field equations, we note that it is possible to separate them
into two independent sets, viz

ky G+ ky FoB> - B ) <af> |
{ ky FlPl . ) 11, I (VI1.24)
We saw already in the linearized case the usefulness of this separation.

In general (VII.24) shows that, contrary to what happens in the standard Ein-
stein theory, the space-time structure is determined by matter not only through the
symmetric energy-momentum tensors T®% and TW <> Lut also through the
skew term 7T () %1,

To acquire an insight into the meaning of this fact, let us consider explicilly
a system formed by a Dirac particle with its own gravitational field. The Lagrangian
of this system can be written as

Q= %kl L+l I+ &p; (VIL.25)
2p is assumed to be given by

i - . .
p =59y (o y ,—im By) ~ (v, o +imy* ) ) (VIL.26)
(see appendix B).

Iy
ot

Note that in our formalism v u is simply the usual derivative
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Performing the variation of &, with respect to ¥ and y, we arrive at the field
equations

a”@p’”—imﬁzp~%oc”@”w:0

1 (VIL.27)
y)+,yoc“+imy)+,8—§1p+ D, =0.
To obtain (VII.27) the identity
g&/‘;‘u = g&@ gﬁ‘g gﬂr“;’u = — g&Q @Q (VIL.28)
has been used.
From the form (VII.26) of &,, the continuity equation
JE = (T o), =0 (VII.29)

is easily seen to hold.
Equations (VII.27) are reduced to the usual Dirac equations in the case of a
flat space, since here we have A[O,Ig]y =0, @, =0. In a space with torsion the exira

1 . . . .
term ) o @, y represents the interaction between the fermion and gravitation. The

similarity of this term to the one introduced in the same equations by the coupling
with the electromagnetic field is worth noting.
The tensor 7% appearing in (VIL.11) can easily be derived; in fact

g: TDaﬁ = g&“ S
ap (VIL.30)

=g 8- gi (vt et w Pyt P ary).

As a consequence of the field equations (VII.27), &, vanishes so that only the second
term of (VII1.30) bas to be taken into account.
We now consider the weak-field limit of the equation

Jey G key FP — — 2B, (VIL.31)

In harmonic coordinates, i. e. when we use the coordinate condition (V.22),
this is

1 .
—5 ki O o + Iy (VY Ry P PO 0Ty = TP, (VI1.32)
where
ol = 5 {vt a*y b -ytFary) (VIL.33)
and
& = 6% b (VI1.34)

p
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The quantity TD%‘ﬂ is the special-relativity energy-momentum tensor of a Dirac

particle. It satisfies the relation
Tpdf 5=0, (VII.35)

as can easily be verified by means of the zero-order Dirac equations

J&”w’ﬂ—imﬁw:() 1
[1p+’ud’“‘+im1p+/)’=0. J

Taking the derivative with respect to f of (VII.32) and using (VIL.35), we find

(VIL.36)

[ e h[,uv],l _ _éi:] ]vl[oc}»]’Z -0. (VIL.37)

If again we supplement equations (VII.32) with the boundary conditions a, b
used in section V, it follows from (VII.37) that

AR L~ (VI1.38)

h A A (VIL.39)

oy~ Av,

If we use (VIL.38), (VII.39) and separate the symmetric and the skew part of (VIL.32),
the field equations become

vl =

by O — a1 59> (VI1.40)

1 . g

5k ePe% [ hppo = thy O RIHY = — 361, (VIL41)
It is well known® that the antisymmetric part of Tp%® is related to the spin

angular-momentum tensor 3“/37’ of a Dirac particle. In fact

1

TP - oy y

ne

and (VII1.40), (VIL.41) tell us that while the symmeiric part of the field is coupled to
the symmetric energy-momentum tensor of matter, the antisymmetric part is coupled
to the spin angular momentum.

The solution of equations (VII.40), (VII.41) may give us some information about
the constant k,, but it is clear that a meaningful solution can be obtained only within
the framework of a quantized theory.

To conclude this section we want to add the remark that equations similar to
(VIL.27), i. e. with the same coupling term o @M’ are valid also for the neutrino field.
Using the two-spinor formalism (see appendix B), we can write the neutrino Lagrangian as

i - A | ¢
& =59 {vag" P vp —va . 9" P ys). (VI1.42)

Again y, , is simply the partial derivative.
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Performing the variation with respect to y4 and gy and using (VIL.28), we
obtain from (VII.42) the equations
1 ud
lgﬂABwB,‘u_2g[u B@‘uQ/JB =0

. 1 e (VIL.43)
YA, u9 _§1PAg ¢‘u:0

and the continuity equation

T = (pa g P yp), = 0. (VIL.44)

VIII. Solution of the Field Equations for a Static, Spherically
Symmetric System

In the case of a static, spherically symmetric system, the field equations are
ky G 4 ky F<oB> — T ®f (VIIL.1)
ky FIBY — ¢, ‘ (VIIL2)

Let us introduce an isotropic coordinate system, where the line element is of
the type

ds® = b (r) (dx®)? - a (1) ia (dx™)? (VIIL.3)
I
and
2= () 4 ()% + (2®)2.

A solution of (VIIL.2), satisfying also the relation (IL.5), is then given by

60{

g = ———
& - e 3

I/Ea) gococ
where ¢, = (1, -1, —1, —1) and the bracket after the index o« means that no sum-

mation over « should be performed.
In fact, using (VIII.4) and the notation

i dA (r) dr 0 xt
=TT s n,=_-—"—o= s s

ds “ ox* r
we have
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1 <
A[otﬂ]y - 5 [[Il (ea) gozoc)] (5%‘} H'B
1
2

(VIIL.5)
[In (g, gpp)]’ 0% 1y,
@, = —[Ina)/b]’ n,. (VIIL.6)
From (VIIL.5), (VIIL.6) it follows that
Ay=0, (VIIL.7)
Dy p—Pp 0 =0. (VIIL.8)
When we use this last result, the tensor F*¥ becomes simply
1
FoB _ o 520t @Q A[ar]ﬂ +§gaﬂ n@cfl,u A[ga]v A[l.“]y’
and by means of (VIIL.5), (VIII.6) we have
FP— _ 7™ (ln a |/b)’ {[in (¢0) Yo0))’ 5@ n,
- [ln (81') g‘n)] ' 5@, na’} g
1 , (VIIIL.9)
+ 1 gaﬁ WQ(MM { [in (89) ggg)] oy g
~[In (30) 9oo)l’ Gov HQ} { [In (¢ gl & - [In (e,u) g[u,u)]’ 5/1; Hl} =0.
Since the tensor F*¥ vanishes, we are left with the equation
— . T®
ky Ga[), = Tocﬁ’ (VIII.10)

which determines in the usual way the two functions a(r), b(r).

The fact that the Schwarzschild metric holds for a static, spherically symmeitric
system is of course very important, since it allows us to say that this theory predicts
correctly the results of the three experimental tests of the theory of general relativity.

IX. The Energy-Momentum Conservation Law

In section III the conservation law
~ A
g:03.,=0 (IX.1)
was obtained, and it was further shown that a superpotential ¢: U}%M] exists such that

A [Ad]
05 = Uy (IX.2)
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From (A.11), (A.20) it is easy to see that

w1, Auo bah A ap
U = kg3, 9™ + g 0"~ g3 9

IX.3)
Ay, P (
+Ic2{./1 gln/l 9521 ¢agiﬁ}'

In the case of a static closed system, and in the absence of fermions, the metric
is asymptotically of the Schwarzschild type, and the gravitational part of @%, which
is bilinear in the first derivatives of g;, behaves at infinity like 1/r%. Hence the four
quantities

P; = g 05 d®x (IX.4)

Sxazconst
are constant in time and invariant under coordinate transformations. We can write

IX.4) in a manifestly covariant form, substituting for the surface x;, = const a general
Y g 0 g
three-dimensional, time-like surface 2, as

Py

v
- 5292 n, dZ, (1X.5)
where n; is the unit vector orthogonal to 2, and dX is the invariant volume
element.
Using (IX.2), we can also express P; as an integral over a two-dimensional,

space-like surface S, the boundary of x,= const:

[0¥]

PA=S g U0 ds, (TX.6)
s

A A
where n,, is a unit three-vector orthogonal to the surface element dS.
The relation between the four scalars Pj; and the total energy and momentum
can easily be seen in the case of a closed system. We now want to introduce a con-
servation law of the usual form. To do this we introduce the tensor density

ul _ o 3 LAl
llvu =g:g1}; Uz’u (IX.7)
and the quantity

T, = i (IX.8)

e

Clearly T,,}“ satisfies the conservation law

T, 2-0. (IX.9)
From (IX.3), (IX.7) it follows that
I (L S (IX.10)

4%
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where
) — kgt [y o @ - 6 M (1X.11)

is the Mgller superpotential®, and
Z’ - 1 Z’ Vﬂ' ¢ A r +
W — kgt (A4 0y AN -2 @ g, 1. (1X.12)

In the case of a static, spherically symmetric system and in isotropic coordinates
the Mgller superpotential is given by®

u* - k)/ab [ln iVll] (8" n# — & oy, (1X.13)
V' Jup |

where the notations of section VIII have been used. For the second term of 11[};}’“] we

obtain
, o .
W = ey ™M 1n a /B g, n, (IX.14)

and, as an immediate consequence,

[Ap]
u -0, (IX.15)
The quantity T,,/1 is now given by

T,} = nikel (IX.16)

Nz
and is equal to the Mgller energy-momentum complex. It is worth remembering that
in isotropic coordinates the Moller complex T# s equal to the Einstein complex OF A

so that we have in this case
T, =TM - @E 2, (1X.17)

This result allows us to identify T, defined by (IX.8), as the energy-momentum
complex.
We can now introduce the total energy and momentum for a closed system

P, =

4

S T,9d . (IX.18)
%o = const

The relation between P, and P; can be found if we write P, in the form
P, :S 1% 1, dS, (1X.19)
5

where n;, dS and S have the same meaning as in (IX.6). Then, using the fact that,
in isotropic coordinates and for r— oo, 11% ~0 ( 1 ) and gﬁ“ = 65 +0 (%) , and further that

r?
S N3¢ n, dS =0, we have
s
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p g 11[Oi]
IS 4

v

n dS - Sg gk U 0 ds
(1X.20)
-{ i U nas - ol ;.
S

The superpotential defined by (IX.7) is a true tensor density; hence UM s
transformed like an antisymmetric tensor under the group of purely spatial trans-
formations

{i":i'i(xk). } (1X.21)

Then HOW‘] will be transformed like a vector density under the same group, and in
particular 110[ #1 , will be a scalar so that it is possible to give to Ty = U, , the
meaning of an energy density.

In contrast to @ZL is not a tensor. On the other hand T is a scalar under the

““gauge’’ group of the constant tetrad rotations, while @A is a vector with respect to

that group. The same is true of P, and P;. The situation does not lead to difficulties
for the total energy and momentum (IX.4), since the tetrad rotations can be inter-
preted, for r oo, as Lorentz transformations. In fact, to write the total energy mo-
mentum in the form (IX.6) is a compact way of saying that this quantity is transformed
like a four-vector under Lorentz transformations.

When we consider the local propertles of the field instead of the global quantlty
P;, we are not allowed to use @i and TA in the same way. In particular, T and
not @g is the energy density, since it is not possible in general to give to the tetrad
rotations the meaning of Lorentz transformations.

The explicit form of Tl,Z can be evaluated from its definition (IX.8):

A_ u[im’ﬂ _ (g? gj UMF]),M

v » Y
i a pAAul < Apl 3
=qﬁg:U{;ﬂ+g:UAM q (1X.22)
—giotiuM Al
v e Tvu
Since
A 2 PRy RgC Y
0" =gk U5+k, U +TG + T b (1X.23)
we have from (A.14), (A.21), (IX.11), (IX.12), (IX.23)
T, = ¢i 1t} + T+ TH A (IX.24)
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y)
tv = kl 7190‘ A[gv] st QGA[W']Z

— 0, O g 01 8+ U0, (IX.25)

+ky [ A2 Ay * — 072 @, Apapyy+ UpgH1 40, ]

The form (IX.22) of T,,,}”, which was already derived by MgLLER ® for his complex,
allows us to establish the transformation properties of our complex. In fact they are
the same as for TM,,A, namely

o'l [ 92 d [ 00
) iy o1t 1X.26
* gt {6x’“t}“+8x”<ax' )Jlle } ( )

Now we want to examine our energy-momentum complex in the weak-field case,
and for simplicity we will assume that the coordinate condition (V.22) holds. Using

again the expression (V.1) for gg, we have

1
Vocﬂy D) (he ﬁ;-}>, «—he a7'l>,ﬁ)
1
Qjoz = _Zh,a
hmg] =0,
so that
u[QU]_lk Ih gse_p 0,0
] ‘5 ll <p.> T l<cpl>
1 1 (IX.27)
+~2—(6§ h'“—égh’e)}+§k2 £20%f Mgy It - J
From (IX.8) we find, using the coordinate condition,
T - ——;—kl Ot =T (IX.28)

so that T,,}“ is equal to the matter tensor, in agreement with the fact that the gravita-
tional complex is of the second order. ‘

If we perform the evaluation of t“ﬁ to the second order, using the h_gp- as
determined from the first-order approximation, the tensor

th=tMpoy p (IX.29)
with
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1 .
tMocﬁ = Zkl {(h<lH>'ﬂ_h<lﬁ>’M) h<lu>,oc

) l (I1X.30)
+§(h,lh<lﬂ>,cx—h,o¢h’ﬁ)_‘SaﬁSMJ‘
1 <afi>,y 1 L0
£M=Zh<zxﬁ>,yh ’ —gh'“h (1X.31)
and
tf = X, PM +xPLA (1X.32)
X, 1M — i ey e by (1X.33)

is obtained.
The tensor tMa/S is just the Mpller weak-field gravitational complex. It is note-
worthy that the symmetric term t:xﬂ can be writlen as a divergence.

We want to thank Professor C. MgLLER for many illuminating discussions. One

of us (C. P.) wants to express his gratitude to Professor C. MgLLER for the generous
hospitality accorded to him by NORDITA.

Appendix A

The Einstein Tensor, the Tensor F* and the Evaluation of the Superpotential

We will recall here the connection, first discovered by MgLLER ¥ &), between
the tetrads and the curvature tensor.
Replacing in the basic formula
A ys5=Apisiy = ~AaRpys
the vector A by gi and multiplying by g&g, we get
L o
R pys g(;(g Biyio~ I ﬁ:&y)' (a1

By contracting this we obtain

0 o/ 4 A

Rop =~ Bagg = ~ 95 (92;9;,3—92;,3;9>’ (4-2)
o aff o & o

R=F, =~ 0.2 (0 05~ 5 o) (A-3)

5%
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The last formula can easily be rewritten as
TR=[g (g7 g% —g.2 g0
g: R [g. (ggg ;o ge g ;g)],a
gl G0 _ 0 _do
+g.(ge;ag e 95509 ;a)
o P 2 g ? TOQ o
_-Z(g'¢),a+g'(ymay —ngd))

)
=H s Ly

(A1)

The importance of this decomposition, as compared with the usual one, which can
for example be written asD

_ 1 — |
V-9 R= “{I/Tg (- 99“’),0} N 99 s Loy T T

lies in the fact that &, is a scalar with respect to coordinate transformations, so that
the action principle is of the type used in other field theories.
By means of (A.2), (A.4) the Ricci tensor can be written as

Gop = g&g (gg;ﬁ;e_gize:ﬂ)

A5)
1 0 ‘ ‘ (
459“/3 g, (gaca; sig™ g{w;g; U) ,
and, multiplying by Tpo> We have
B of e/ ax; zx 3B
G = 9pa 6" = 995" (7 =57, ") |
A6
1 Aﬂg?(&ﬂ _g&a ) (4.6)
298 9a\9 a0 sesol”
The mixed expression GBﬂ can be decomposed in the form
G = i n# (A7)

B 14y "1’

where lllg is bilinear and Hl[ﬁﬁ linear in the first derivatives of gg.
To establish the form (A.7) of Gﬁﬁ it is better to start from the alternative expres-
sion of Ryg and R given by MoLLER®):

Raﬂ = fy@“ﬂ/e _ Q}o‘/ﬂ _ »y@aﬂ ng + '}/Qaa fyUﬂQ s (A.8)

R= = 2@y + 5, 757 — B, B, (A.9)
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Using the fact that the absolute derivative qA g = 0, we obtain

B of B

% "I =0
ofor B =0 e 48 of | o«

z(gﬁ’a 9P - 9p @) *9/§a<?’ ¥ o [ (A.10)

7@Qy9'3“) lgf;( Yoor?

W+Q§D (DQ).

Defini
efining [ﬁg] _ ﬁ ox @ (pﬁ@ [?@Q (A.11)

U =97 93 9p :

and using the connection between the absolute and the covariant derivative®

18/g 10 18 69+U1ﬁ Yag

we easily find from (A.10), (A.11), (A.12)

g _ e | 1B fo b e (A.12)

B_ _ptber _ o1 p 7 5
G =~ Uigie Ui V" P P, 15
ef ox 1 . '
F ¥ ¥ “g—§g§9=8M
and
B _gloap p of ox 1 B . 14
Uﬁ Uﬁ o0 gﬁQ @ T 95,7 oV g 29,39'21\4' (A.14)
A decomposition similar to (A.7) can be found for
. 1
s Y (A.15)
e 599
4
The term I of our Lagrangian can be written as
y 1 f alwp f Plop o ]
Ag? — g7 Bo_ gt
<9Z,ﬁ gg,oc) (gl,'u gv,l)' I
Performing the variation of I, we have
. o1 .
I T () B
g: Fy = 548 -9t Uporot 9 Uspo (A.17)
n 1 - yY v
cpfleol L) e advp B Blvp o)
Uzé;a 2{ '(77 gy~ gy) i
(A.18)

0 - « . -
iy ) o]
, O

0,0
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’ (92,/3_9?3?#) (glﬂ,v;gf},l)'

Evaluating (A.17), (A.18), we obtain

0 sa e B odw
Usg =4 Aoy 9= @, (952, 93,1

From (A.17), (A.20), (A.21) it follows that

e e 0 40 ¢ goufi
00 e B ol
+4 A[flﬂ] gé_n d;oc gél,v_gév,l)'

We can now define the tensor
FGQ = gQG Fég.

By means of (A.22) this is easily seen to be

Fo2 _ {/i@ g-w_ AT gag +9 nrocga Q)a}; .
= {AQyTy — AT 20, 2 g B, g7
+ A% Ay~ e Dy Apian®
— o0 _ geﬂ/ir; -+ 2 neoab D,
— BTN 492 AT By B, A, P
+ A% A, 02— e B, A0

Nr. 4

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

The term /i”;, can be written in a form showing explicitly that it depends only

on the first derivatives of the tetrad field. In fact

g? /It;r = g? 7710‘/37 A[ozﬂ]‘y;r
=2[g " g2 g, )

- _ Y
n 287“,3 g;‘,rg&a,ﬂ

1 .
= E g: 7].mﬂy/l[y'r] J A[oq?](s

(A.25)
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Appendix B

Tensors and Spinors

Here we want to discuss how the concepts of tensor and spinor can be introduced
in our theory.

It is well known that in the special theory of relativity the definition of tensors
can be given from two different points of view. One can define a vector as an object
that is transformed like the coordinates under a Lorentz transformation, and a tensor
as an object that is transformed like a product of vectors; or one can consider the
representations of the Lorentz group and introduce in this way both tensors and spinors
as quantities that are transformed in a well-defined way under a Lorentz transforma-
tion.

Clearly the second approach is more fundamental, since it allows us to introduce
both spinors and tensors in a very natural way.

When we go from the special to the general theory of relativity, we can use
only the first point of view. In consequence, the spinor fields are not, in the general
case, on the same basis as tensor fields, which is quite unsatisfactory®.

In the framework of our theory it seems possible instead to re-establish the
connection between tensors and spinors, as representations of the Lorentz group, and
the usual non-group-theoretical definition.

Let us consider a Riemannian four-space V, in which a coordinate system
2% - --, 2% has been introduced. In each point of this space we have a tetrad whose -

components are gg (). The representiation of the group L of the proper tetrad rotations

gives us quantities

and
Yy (A, B=1,2)

which are tensors or spinors with respect to L. The connection between the “local”
; (as defined from the first point of view)
is easily established with the help of the gZ:

tensor Tg”' and a “‘world” tensor T

T gl TE

The spinors, which have no “‘roofed” index, are simply equivalent to ““world™ scalars,
while the connection between the ‘‘local”” Dirac matrices y‘;‘ and the ‘“world”” matrices
is again given by gg:

ot o

o
Y =97
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From this point of view the constant tetrad rotations, which leave our theory invariant,
play a part analogous to that of the Lorentz transformation of special relativity. In
general there exists no relation between tetrad rotations and coordinate transformations,
as there does between ‘‘local’” tensors and spinors and ‘“world” tensors. Only in the
limit of flat space-time and when we use cartesian coordinates are tetrad rotations
equivalent to Lorentz transformations so that we obtain the formalism of special
relativity as a limiting case.

Since we need it in section VI, we will now review -the essential steps of the
introduction of spinors, at the same time establishing our notations.

In this paper we consider three types of transformation:

(a) coordinate transformations a'* = "% () (group C);

(b) tetrad rotations A= L&B AP (group L);

(¢) linear or antilinear unimodular transformations in the two-dimensional complex
spin space, induced by proper or improper tetrad rotations (group T).

Objects that are transformed appropriately with respect to all groups will be called
tensors and spinors.

We remember that to the group L belong, in our theory, only the constant tetrad
rotations.

A general tensor density ig Z is transformed like
: ox'® <Nz
A2 0. 1140
T {det P } {det| L8|}
e o A A A (B.1)
xl O IR [l e

where w, i are the weights of the (a) and (b) transformations, L&i is submitted to
the condition (I1.7) and L‘lﬁg is defined by LZ;‘ L_léB = 6%* Note that det | L&ﬁl is
equal to one in the case of proper tetrad rotations and to minus one in the case of
improper rotations.

We give the name contravariant spinor to the quantity y* (4 =1, 2), which
under linear, unimodular transformations 45, det | #5| = 1, is transformed like®**

WA= A, B, (B.2)

* From this definition and (I 7) it follows that

Fla _ gy 1.
0 py o

** In order to simplify the notations we shall not here discuss spinor density. For a more general formula-
tion see for instance the book by Corson (reference 9).
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Spin indices may be raised or lowered with the help of the metrical spinors

0 1
_ 4A4B _ B.3
GgaB= 9 1 0 (B.3)
so that
[ v =wp g™ = - g yp |
. . (B.4)
l‘PA =gJuap¥ - I

The isomorphism between the groups L and T may be established with the help of
the numerical spin matrices

/lroe] for] o il 1o B.5)
B \lo1| |1o] [=io] jo-1]) '
We have, in the case of proper tetrad rotations,
L&A=l xAB . 4C 4D (B.6)
g 29 gﬂcp 4 B ’
where )
4 A Y
By = (t B)#

(the asterisk means complex conjugation).
The space of the spinors v, is the space of the representation D (1/2, 0) of the proper
rotation group. The conjugate representation

yph =t B, pd = (p4) (B.7)

is transformed like the representation D (0, 1/2).
Under improper Lorentz rotations the spinors are transformed by means of the
antilinear operators t45, det |45 =1,

pt = 14595, (B.8)

2
improper rotations and the antilinear operators 4 is given by

. . . : 1 . -
which mix the representations D(% ()) and D(O, —). The isomorphism between the

o 1 sis ¢ 4D
L“/}=§g°‘ y,BC"Dt Bi e (B.9)

The spin matrices g; ;g can be defined in a general way by the relations

(9&213):2: - g&BA’ (B.10)

. 1 ~A .
Ba,  _. 4 L Sha 3
95 Ipso ~9ap ot tps g 9 her (B.11)
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The four spinors y can be introduced as the direct sum of the two representations

1 1
D(i’ 0), D(O, 5), "

The y matrices can be given by the definition

g = | 0. _l‘guiml
i I gh48 l 0
and satisfy the relation
Py 47l = 2 g,

Instead of the y’A‘ we will use the matrices oci‘, B, which are all Hermitian, while 3°
is Hermitian and »', 9%, ° are anti-Hermitian®®. The relation between the y and
the « is

ﬁyi = o (i=1,2,3)

Together with spinors we must define their derivatives. In contrast to what is
the case in the usual theory, this can be done quite simply. In fact, since w4 is a scalar
with respect to the group C, y, u is transformed like a vector. Further, with respect
to the group L v, u 18 transformed like a spinor, as follows from the fact that only
constant tetrad rotations belong to L. So we can simply define the derivative of a two-
or four-spinor as o 4,10 0T ¥ 4, and there is no need to introduce additive terms, as
we must do in the Einstein theory.

C. PELLEGRINI, NORDITA, Copenhagen,
on leave from Laboratori Nazionali di Frascali (Roma).

J. PLEBANSKI, Instytut Fizyki Universytetu
Warszawskiego.
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